Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.2
Найдем предел числителя.
Этап 1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.2.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.2.3
Внесем предел под знак экспоненты.
Этап 1.2.4
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.2.5
Найдем предел , который является константой по мере приближения к .
Этап 1.2.6
Найдем предел , который является константой по мере приближения к .
Этап 1.2.7
Упростим члены.
Этап 1.2.7.1
Найдем предел , подставив значение для .
Этап 1.2.7.2
Упростим ответ.
Этап 1.2.7.2.1
Упростим каждый член.
Этап 1.2.7.2.1.1
Умножим на .
Этап 1.2.7.2.1.2
Добавим и .
Этап 1.2.7.2.1.3
Любое число в степени равно .
Этап 1.2.7.2.1.4
Умножим на .
Этап 1.2.7.2.1.5
Умножим на .
Этап 1.2.7.2.2
Вычтем из .
Этап 1.3
Найдем предел знаменателя.
Этап 1.3.1
Вычислим предел.
Этап 1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.3.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.3.1.3
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.3.1.4
Найдем предел , который является константой по мере приближения к .
Этап 1.3.2
Найдем предел , подставив значение для .
Этап 1.3.3
Упростим ответ.
Этап 1.3.3.1
Упростим каждый член.
Этап 1.3.3.1.1
Возведем в степень .
Этап 1.3.3.1.2
Умножим на .
Этап 1.3.3.1.3
Умножим на .
Этап 1.3.3.2
Вычтем из .
Этап 1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3
Этап 3.1
Продифференцируем числитель и знаменатель.
Этап 3.2
По правилу суммы производная по имеет вид .
Этап 3.3
Найдем значение .
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.3.2.3
Заменим все вхождения на .
Этап 3.3.3
По правилу суммы производная по имеет вид .
Этап 3.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.3.5
Поскольку является константой относительно , производная по равна .
Этап 3.3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.7
Умножим на .
Этап 3.3.8
Вычтем из .
Этап 3.3.9
Перенесем влево от .
Этап 3.3.10
Перепишем в виде .
Этап 3.3.11
Умножим на .
Этап 3.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.5
Добавим и .
Этап 3.6
По правилу суммы производная по имеет вид .
Этап 3.7
Найдем значение .
Этап 3.7.1
Поскольку является константой относительно , производная по равна .
Этап 3.7.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.7.3
Умножим на .
Этап 3.8
Поскольку является константой относительно , производная относительно равна .
Этап 3.9
Добавим и .
Этап 4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 5
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 6
Внесем предел под знак экспоненты.
Этап 7
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 8
Найдем предел , который является константой по мере приближения к .
Этап 9
Этап 9.1
Найдем предел , подставив значение для .
Этап 9.2
Найдем предел , подставив значение для .
Этап 10
Этап 10.1
Объединим.
Этап 10.2
Упростим числитель.
Этап 10.2.1
Умножим на .
Этап 10.2.2
Добавим и .
Этап 10.2.3
Любое число в степени равно .
Этап 10.3
Умножим на .
Этап 10.4
Умножим на .
Этап 10.5
Деление двух отрицательных значений дает положительное значение.