Математический анализ Примеры

Оценить предел предел (1-cos(x)+sin(x))/(1-cos(x)-sin(x)), если x стремится к 0
Этап 1
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.2
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.3
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 1.1.2.4
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 1.1.2.5
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 1.1.2.5.1
Найдем предел , подставив значение для .
Этап 1.1.2.5.2
Найдем предел , подставив значение для .
Этап 1.1.2.6
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.1.2.6.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.2.6.1.1
Точное значение : .
Этап 1.1.2.6.1.2
Умножим на .
Этап 1.1.2.6.1.3
Точное значение : .
Этап 1.1.2.6.2
Вычтем из .
Этап 1.1.2.6.3
Добавим и .
Этап 1.1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.3.2
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.3
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 1.1.3.4
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 1.1.3.5
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 1.1.3.5.1
Найдем предел , подставив значение для .
Этап 1.1.3.5.2
Найдем предел , подставив значение для .
Этап 1.1.3.6
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.1.3.6.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.3.6.1.1
Точное значение : .
Этап 1.1.3.6.1.2
Умножим на .
Этап 1.1.3.6.1.3
Точное значение : .
Этап 1.1.3.6.1.4
Умножим на .
Этап 1.1.3.6.2
Вычтем из .
Этап 1.1.3.6.3
Добавим и .
Этап 1.1.3.6.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.3.7
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
По правилу суммы производная по имеет вид .
Этап 1.3.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.4.2
Производная по равна .
Этап 1.3.4.3
Умножим на .
Этап 1.3.4.4
Умножим на .
Этап 1.3.5
Производная по равна .
Этап 1.3.6
Добавим и .
Этап 1.3.7
По правилу суммы производная по имеет вид .
Этап 1.3.8
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.9
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.9.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.9.2
Производная по равна .
Этап 1.3.9.3
Умножим на .
Этап 1.3.9.4
Умножим на .
Этап 1.3.10
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.10.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.10.2
Производная по равна .
Этап 1.3.11
Добавим и .
Этап 2
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 2.1
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 2.2
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.3
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 2.4
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 2.5
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.6
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 2.7
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 3
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 3.1
Найдем предел , подставив значение для .
Этап 3.2
Найдем предел , подставив значение для .
Этап 3.3
Найдем предел , подставив значение для .
Этап 3.4
Найдем предел , подставив значение для .
Этап 4
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Точное значение : .
Этап 4.1.2
Точное значение : .
Этап 4.1.3
Добавим и .
Этап 4.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Точное значение : .
Этап 4.2.2
Точное значение : .
Этап 4.2.3
Умножим на .
Этап 4.2.4
Вычтем из .
Этап 4.3
Вынесем знак минуса из знаменателя .
Этап 4.4
Умножим на .