Введите задачу...
Математический анализ Примеры
Этап 1
Разделим числитель и знаменатель на в наибольшей степени в знаменателе, т. е. .
Этап 2
Этап 2.1
Упростим каждый член.
Этап 2.1.1
Сократим общий множитель .
Этап 2.1.1.1
Сократим общий множитель.
Этап 2.1.1.2
Разделим на .
Этап 2.1.2
Сократим общий множитель и .
Этап 2.1.2.1
Вынесем множитель из .
Этап 2.1.2.2
Сократим общие множители.
Этап 2.1.2.2.1
Вынесем множитель из .
Этап 2.1.2.2.2
Сократим общий множитель.
Этап 2.1.2.2.3
Перепишем это выражение.
Этап 2.1.3
Вынесем знак минуса перед дробью.
Этап 2.1.4
Сократим общий множитель и .
Этап 2.1.4.1
Вынесем множитель из .
Этап 2.1.4.2
Сократим общие множители.
Этап 2.1.4.2.1
Вынесем множитель из .
Этап 2.1.4.2.2
Сократим общий множитель.
Этап 2.1.4.2.3
Перепишем это выражение.
Этап 2.1.5
Вынесем знак минуса перед дробью.
Этап 2.2
Упростим каждый член.
Этап 2.2.1
Сократим общий множитель и .
Этап 2.2.1.1
Умножим на .
Этап 2.2.1.2
Сократим общие множители.
Этап 2.2.1.2.1
Вынесем множитель из .
Этап 2.2.1.2.2
Сократим общий множитель.
Этап 2.2.1.2.3
Перепишем это выражение.
Этап 2.2.2
Сократим общий множитель и .
Этап 2.2.2.1
Вынесем множитель из .
Этап 2.2.2.2
Сократим общие множители.
Этап 2.2.2.2.1
Вынесем множитель из .
Этап 2.2.2.2.2
Сократим общий множитель.
Этап 2.2.2.2.3
Перепишем это выражение.
Этап 2.2.3
Вынесем знак минуса перед дробью.
Этап 2.2.4
Сократим общий множитель .
Этап 2.2.4.1
Сократим общий множитель.
Этап 2.2.4.2
Разделим на .
Этап 2.3
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 2.4
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.5
Найдем предел , который является константой по мере приближения к .
Этап 2.6
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 5
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 6
Вынесем член из-под знака предела, так как он не зависит от .
Этап 7
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 8
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 9
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 10
Вынесем член из-под знака предела, так как он не зависит от .
Этап 11
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 12
Найдем предел , который является константой по мере приближения к .
Этап 13
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 14
Этап 14.1
Упростим числитель.
Этап 14.1.1
Умножим на .
Этап 14.1.2
Умножим на .
Этап 14.1.3
Умножим на .
Этап 14.1.4
Добавим и .
Этап 14.1.5
Добавим и .
Этап 14.1.6
Добавим и .
Этап 14.2
Упростим знаменатель.
Этап 14.2.1
Умножим на .
Этап 14.2.2
Умножим на .
Этап 14.2.3
Умножим на .
Этап 14.2.4
Добавим и .
Этап 14.2.5
Добавим и .
Этап 14.2.6
Вычтем из .
Этап 14.3
Разделим на .