Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Этап 5.1
Пусть . Найдем .
Этап 5.1.1
Дифференцируем .
Этап 5.1.2
Поскольку является константой относительно , производная по равна .
Этап 5.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.4
Умножим на .
Этап 5.2
Переформулируем задачу с помощью и .
Этап 6
Этап 6.1
Умножим на обратную дробь, чтобы разделить на .
Этап 6.2
Умножим на .
Этап 6.3
Перенесем влево от .
Этап 7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
Умножим на .
Этап 9
Поскольку производная равна , интеграл равен .
Этап 10
Этап 10.1
Упростим.
Этап 10.2
Умножим на .
Этап 11
Заменим все вхождения на .
Этап 12
Изменим порядок членов.
Этап 13
Ответ ― первообразная функции .