Математический анализ Примеры

Вычислим интеграл интеграл (2e^x-2e^(-x))/((e^x+e^(-x))^2) по x
Этап 1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.1
Вынесем множитель из .
Этап 1.2
Вынесем множитель из .
Этап 1.3
Вынесем множитель из .
Этап 2
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 3
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 3.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Дифференцируем .
Этап 3.1.2
По правилу суммы производная по имеет вид .
Этап 3.1.3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.1.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.1.4.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.1.4.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.1.4.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.1.4.1.3
Заменим все вхождения на .
Этап 3.1.4.2
Поскольку является константой относительно , производная по равна .
Этап 3.1.4.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.4.4
Умножим на .
Этап 3.1.4.5
Перенесем влево от .
Этап 3.1.4.6
Перепишем в виде .
Этап 3.2
Переформулируем задачу с помощью и .
Этап 4
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 4.1
Вынесем из знаменателя, возведя в степень.
Этап 4.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Применим правило степени и перемножим показатели, .
Этап 4.2.2
Умножим на .
Этап 5
По правилу степени интеграл по имеет вид .
Этап 6
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Перепишем в виде .
Этап 6.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Умножим на .
Этап 6.2.2
Объединим и .
Этап 6.2.3
Вынесем знак минуса перед дробью.
Этап 7
Заменим все вхождения на .