Введите задачу...
Математический анализ Примеры
Этап 1
Избавимся от скобок.
Этап 2
Разделим данный интеграл на несколько интегралов.
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Этап 4.1
Пусть . Найдем .
Этап 4.1.1
Дифференцируем .
Этап 4.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 4.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 4.1.2.2
Производная по равна .
Этап 4.1.2.3
Заменим все вхождения на .
Этап 4.1.3
Продифференцируем.
Этап 4.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.3.3
Упростим выражение.
Этап 4.1.3.3.1
Умножим на .
Этап 4.1.3.3.2
Перенесем влево от .
Этап 4.2
Переформулируем задачу с помощью и .
Этап 5
Применим правило дифференцирования постоянных функций.
Этап 6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Этап 7.1
Пусть . Найдем .
Этап 7.1.1
Дифференцируем .
Этап 7.1.2
Поскольку является константой относительно , производная по равна .
Этап 7.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 7.1.4
Умножим на .
Этап 7.2
Переформулируем задачу с помощью и .
Этап 8
Этап 8.1
Объединим и .
Этап 8.2
Объединим и .
Этап 9
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
Этап 10.1
Объединим и .
Этап 10.2
Вынесем знак минуса перед дробью.
Этап 11
Поскольку производная равна , интеграл равен .
Этап 12
Этап 12.1
Упростим.
Этап 12.2
Упростим.
Этап 12.2.1
Умножим на .
Этап 12.2.2
Умножим на .
Этап 12.2.3
Объединим и .
Этап 13
Этап 13.1
Заменим все вхождения на .
Этап 13.2
Заменим все вхождения на .
Этап 14
Изменим порядок членов.