Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.2
Продифференцируем.
Этап 1.2.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.2
Перенесем влево от .
Этап 1.2.3
По правилу суммы производная по имеет вид .
Этап 1.2.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.2.5
Добавим и .
Этап 1.2.6
Поскольку является константой относительно , производная по равна .
Этап 1.2.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.8
Упростим выражение.
Этап 1.2.8.1
Умножим на .
Этап 1.2.8.2
Перенесем влево от .
Этап 1.3
Упростим.
Этап 1.3.1
Применим свойство дистрибутивности.
Этап 1.3.2
Применим свойство дистрибутивности.
Этап 1.3.3
Объединим термины.
Этап 1.3.3.1
Умножим на .
Этап 1.3.3.2
Умножим на .
Этап 1.3.3.3
Возведем в степень .
Этап 1.3.3.4
Возведем в степень .
Этап 1.3.3.5
Применим правило степени для объединения показателей.
Этап 1.3.3.6
Добавим и .
Этап 1.3.3.7
Вычтем из .
Этап 1.3.4
Изменим порядок членов.
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Этап 4.1
Найдем первую производную.
Этап 4.1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 4.1.2
Продифференцируем.
Этап 4.1.2.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2.2
Перенесем влево от .
Этап 4.1.2.3
По правилу суммы производная по имеет вид .
Этап 4.1.2.4
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.2.5
Добавим и .
Этап 4.1.2.6
Поскольку является константой относительно , производная по равна .
Этап 4.1.2.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2.8
Упростим выражение.
Этап 4.1.2.8.1
Умножим на .
Этап 4.1.2.8.2
Перенесем влево от .
Этап 4.1.3
Упростим.
Этап 4.1.3.1
Применим свойство дистрибутивности.
Этап 4.1.3.2
Применим свойство дистрибутивности.
Этап 4.1.3.3
Объединим термины.
Этап 4.1.3.3.1
Умножим на .
Этап 4.1.3.3.2
Умножим на .
Этап 4.1.3.3.3
Возведем в степень .
Этап 4.1.3.3.4
Возведем в степень .
Этап 4.1.3.3.5
Применим правило степени для объединения показателей.
Этап 4.1.3.3.6
Добавим и .
Этап 4.1.3.3.7
Вычтем из .
Этап 4.1.3.4
Изменим порядок членов.
Этап 4.2
Первая производная по равна .
Этап 5
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Вынесем множитель из .
Этап 5.2.1
Вынесем множитель из .
Этап 5.2.2
Вынесем множитель из .
Этап 5.2.3
Вынесем множитель из .
Этап 5.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5.4
Приравняем к .
Этап 5.5
Приравняем к , затем решим относительно .
Этап 5.5.1
Приравняем к .
Этап 5.5.2
Добавим к обеим частям уравнения.
Этап 5.6
Окончательным решением являются все значения, при которых верно.
Этап 6
Этап 6.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Этап 9.1
Умножим на .
Этап 9.2
Добавим и .
Этап 10
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 11
Этап 11.1
Заменим в этом выражении переменную на .
Этап 11.2
Упростим результат.
Этап 11.2.1
Умножим на .
Этап 11.2.2
Добавим и .
Этап 11.2.3
Возведение в любую положительную степень дает .
Этап 11.2.4
Умножим на .
Этап 11.2.5
Окончательный ответ: .
Этап 12
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 13
Этап 13.1
Умножим на .
Этап 13.2
Добавим и .
Этап 14
— локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
— локальный максимум
Этап 15
Этап 15.1
Заменим в этом выражении переменную на .
Этап 15.2
Упростим результат.
Этап 15.2.1
Умножим на .
Этап 15.2.2
Вычтем из .
Этап 15.2.3
Возведем в степень .
Этап 15.2.4
Умножим на .
Этап 15.2.5
Окончательный ответ: .
Этап 16
Это локальные экстремумы .
— локальный минимум
— локальный максимум
Этап 17