Введите задачу...
Математический анализ Примеры
Этап 1
Избавимся от скобок.
Этап 2
Этап 2.1
Применим свойство дистрибутивности.
Этап 2.2
Умножим на , сложив экспоненты.
Этап 2.2.1
Перенесем .
Этап 2.2.2
Применим правило степени для объединения показателей.
Этап 2.2.3
Добавим и .
Этап 2.3
Сократим общий множитель .
Этап 2.3.1
Вынесем множитель из .
Этап 2.3.2
Вынесем множитель из .
Этап 2.3.3
Сократим общий множитель.
Этап 2.3.4
Перепишем это выражение.
Этап 2.4
Объединим и .
Этап 2.5
Умножим на .
Этап 3
Разделим данный интеграл на несколько интегралов.
Этап 4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
По правилу степени интеграл по имеет вид .
Этап 6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Интеграл по имеет вид .
Этап 8
Этап 8.1
Упростим.
Этап 8.2
Упростим.
Этап 8.2.1
Объединим и .
Этап 8.2.2
Сократим общий множитель и .
Этап 8.2.2.1
Вынесем множитель из .
Этап 8.2.2.2
Сократим общие множители.
Этап 8.2.2.2.1
Вынесем множитель из .
Этап 8.2.2.2.2
Сократим общий множитель.
Этап 8.2.2.2.3
Перепишем это выражение.