Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2
Этап 2.1
Пусть . Найдем .
Этап 2.1.1
Дифференцируем .
Этап 2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2
Переформулируем задачу с помощью и .
Этап 3
Этап 3.1
Умножим на .
Этап 3.2
Перенесем влево от .
Этап 4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Объединим и .
Этап 6
Этап 6.1
Пусть . Найдем .
Этап 6.1.1
Дифференцируем .
Этап 6.1.2
По правилу суммы производная по имеет вид .
Этап 6.1.3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 6.1.4
Продифференцируем, используя правило константы.
Этап 6.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 6.1.4.2
Добавим и .
Этап 6.2
Переформулируем задачу с помощью и .
Этап 7
Умножим на .
Этап 8
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Этап 9.1
Умножим на .
Этап 9.2
Перенесем влево от .
Этап 10
Интеграл по имеет вид .
Этап 11
Упростим.
Этап 12
Этап 12.1
Заменим все вхождения на .
Этап 12.2
Заменим все вхождения на .