Математический анализ Примеры

Используйте Формулу Дифференцирования Логарифмов для Нахождения Производной y=x^(5sin(x))
Этап 1
Пусть , возьмем натуральный логарифм обеих частей .
Этап 2
Развернем , вынося из логарифма.
Этап 3
Продифференцируем выражение, используя цепное правило, учитывая, что  — функция от .
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем левую часть , используя цепное правило.
Этап 3.2
Продифференцируем правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Дифференцируем .
Этап 3.2.2
Поскольку является константой относительно , производная по равна .
Этап 3.2.3
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.2.4
Производная по равна .
Этап 3.2.5
Объединим и .
Этап 3.2.6
Производная по равна .
Этап 3.2.7
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.2.7.1
Применим свойство дистрибутивности.
Этап 3.2.7.2
Объединим и .
Этап 3.2.7.3
Изменим порядок членов.
Этап 4
Изолируем и заменим исходную функцию на в правой части.
Этап 5
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 5.1.1
Изменим порядок и .
Этап 5.1.2
Упростим путем переноса под логарифм.
Этап 5.2
Применим свойство дистрибутивности.
Этап 5.3
Объединим и .
Этап 5.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.4.1
Вынесем множитель из .
Этап 5.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.4.2.1
Возведем в степень .
Этап 5.4.2.2
Вынесем множитель из .
Этап 5.4.2.3
Сократим общий множитель.
Этап 5.4.2.4
Перепишем это выражение.
Этап 5.4.2.5
Разделим на .
Этап 5.5
Изменим порядок множителей в .