Математический анализ Примеры

Trovare la Derivata - d/dx y=(2tan(2x)^3-1)^(1/3)
Этап 1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3
Заменим все вхождения на .
Этап 2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3
Объединим и .
Этап 4
Объединим числители над общим знаменателем.
Этап 5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.1
Умножим на .
Этап 5.2
Вычтем из .
Этап 6
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 6.1
Вынесем знак минуса перед дробью.
Этап 6.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Объединим и .
Этап 6.2.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 6.3
По правилу суммы производная по имеет вид .
Этап 6.4
Поскольку является константой относительно , производная по равна .
Этап 7
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 7.1
Чтобы применить цепное правило, зададим как .
Этап 7.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 7.3
Заменим все вхождения на .
Этап 8
Умножим на .
Этап 9
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 9.1
Чтобы применить цепное правило, зададим как .
Этап 9.2
Производная по равна .
Этап 9.3
Заменим все вхождения на .
Этап 10
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 10.1
Поскольку является константой относительно , производная по равна .
Этап 10.2
Умножим на .
Этап 10.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 10.4
Умножим на .
Этап 10.5
Поскольку является константой относительно , производная относительно равна .
Этап 10.6
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 10.6.1
Добавим и .
Этап 10.6.2
Объединим и .
Этап 10.6.3
Объединим и .
Этап 10.6.4
Объединим и .
Этап 10.6.5
Перенесем влево от .
Этап 10.6.6
Вынесем множитель из .
Этап 11
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 11.1
Вынесем множитель из .
Этап 11.2
Сократим общий множитель.
Этап 11.3
Перепишем это выражение.
Этап 12
Изменим порядок членов.