Математический анализ Примеры

Trovare la Second Derivata y=-1/4x^-4-1/16+1/4x^4
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Умножим на .
Этап 1.2.4
Объединим и .
Этап 1.2.5
Объединим и .
Этап 1.2.6
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.2.7
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.7.1
Сократим общий множитель.
Этап 1.2.7.2
Перепишем это выражение.
Этап 1.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.4.3
Объединим и .
Этап 1.4.4
Объединим и .
Этап 1.4.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.5.1
Сократим общий множитель.
Этап 1.4.5.2
Разделим на .
Этап 1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Добавим и .
Этап 1.5.2
Изменим порядок членов.
Этап 2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Перепишем в виде .
Этап 2.2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.2.3
Заменим все вхождения на .
Этап 2.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.4
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.4.1
Применим правило степени и перемножим показатели, .
Этап 2.2.4.2
Умножим на .
Этап 2.2.5
Умножим на .
Этап 2.2.6
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.2.6.1
Перенесем .
Этап 2.2.6.2
Применим правило степени для объединения показателей.
Этап 2.2.6.3
Вычтем из .
Этап 2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 2.3.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Объединим и .
Этап 2.3.2.2
Вынесем знак минуса перед дробью.