Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Этап 2.2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.2.3.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3.3
Заменим все вхождения на .
Этап 2.2.4
Перепишем в виде .
Этап 2.2.5
Перенесем влево от .
Этап 2.2.6
Перенесем влево от .
Этап 2.3
Найдем значение .
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.4
Перепишем в виде .
Этап 2.3.5
Умножим на .
Этап 2.4
Найдем значение .
Этап 2.4.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.4.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.4.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4.1.3
Заменим все вхождения на .
Этап 2.4.2
Перепишем в виде .
Этап 2.5
Упростим.
Этап 2.5.1
Применим свойство дистрибутивности.
Этап 2.5.2
Избавимся от ненужных скобок.
Этап 2.5.3
Изменим порядок членов.
Этап 3
Поскольку является константой относительно , производная относительно равна .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Этап 5.1
Перенесем все члены без в правую часть уравнения.
Этап 5.1.1
Вычтем из обеих частей уравнения.
Этап 5.1.2
Добавим к обеим частям уравнения.
Этап 5.2
Вынесем множитель из .
Этап 5.2.1
Вынесем множитель из .
Этап 5.2.2
Вынесем множитель из .
Этап 5.2.3
Вынесем множитель из .
Этап 5.2.4
Вынесем множитель из .
Этап 5.2.5
Вынесем множитель из .
Этап 5.3
Разделим каждый член на и упростим.
Этап 5.3.1
Разделим каждый член на .
Этап 5.3.2
Упростим левую часть.
Этап 5.3.2.1
Сократим общий множитель .
Этап 5.3.2.1.1
Сократим общий множитель.
Этап 5.3.2.1.2
Перепишем это выражение.
Этап 5.3.2.2
Сократим общий множитель .
Этап 5.3.2.2.1
Сократим общий множитель.
Этап 5.3.2.2.2
Разделим на .
Этап 5.3.3
Упростим правую часть.
Этап 5.3.3.1
Упростим каждый член.
Этап 5.3.3.1.1
Сократим общий множитель и .
Этап 5.3.3.1.1.1
Вынесем множитель из .
Этап 5.3.3.1.1.2
Сократим общие множители.
Этап 5.3.3.1.1.2.1
Сократим общий множитель.
Этап 5.3.3.1.1.2.2
Перепишем это выражение.
Этап 5.3.3.1.2
Вынесем знак минуса перед дробью.
Этап 5.3.3.1.3
Сократим общий множитель .
Этап 5.3.3.1.3.1
Сократим общий множитель.
Этап 5.3.3.1.3.2
Перепишем это выражение.
Этап 5.3.3.2
Упростим члены.
Этап 5.3.3.2.1
Объединим числители над общим знаменателем.
Этап 5.3.3.2.2
Вынесем множитель из .
Этап 5.3.3.2.2.1
Вынесем множитель из .
Этап 5.3.3.2.2.2
Возведем в степень .
Этап 5.3.3.2.2.3
Вынесем множитель из .
Этап 5.3.3.2.2.4
Вынесем множитель из .
Этап 5.3.3.2.3
Вынесем множитель из .
Этап 5.3.3.2.4
Перепишем в виде .
Этап 5.3.3.2.5
Вынесем множитель из .
Этап 5.3.3.2.6
Упростим выражение.
Этап 5.3.3.2.6.1
Перепишем в виде .
Этап 5.3.3.2.6.2
Вынесем знак минуса перед дробью.
Этап 6
Заменим на .