Введите задачу...
Математический анализ Примеры
Этап 1
Избавимся от скобок.
Этап 2
Разделим данный интеграл на несколько интегралов.
Этап 3
Этап 3.1
Пусть . Найдем .
Этап 3.1.1
Дифференцируем .
Этап 3.1.2
По правилу суммы производная по имеет вид .
Этап 3.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.1.5
Добавим и .
Этап 3.2
Подставим нижнее предельное значение вместо в .
Этап 3.3
Добавим и .
Этап 3.4
Подставим верхнее предельное значение вместо в .
Этап 3.5
Добавим и .
Этап 3.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 3.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 4
Интеграл по имеет вид .
Этап 5
Этап 5.1
Пусть . Найдем .
Этап 5.1.1
Дифференцируем .
Этап 5.1.2
По правилу суммы производная по имеет вид .
Этап 5.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 5.1.5
Добавим и .
Этап 5.2
Подставим нижнее предельное значение вместо в .
Этап 5.3
Добавим и .
Этап 5.4
Подставим верхнее предельное значение вместо в .
Этап 5.5
Добавим и .
Этап 5.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 5.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 6
Этап 6.1
Вынесем из знаменателя, возведя в степень.
Этап 6.2
Перемножим экспоненты в .
Этап 6.2.1
Применим правило степени и перемножим показатели, .
Этап 6.2.2
Умножим на .
Этап 7
По правилу степени интеграл по имеет вид .
Этап 8
Этап 8.1
Найдем значение в и в .
Этап 8.2
Найдем значение в и в .
Этап 8.3
Упростим.
Этап 8.3.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 8.3.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 8.3.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8.3.4
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8.3.5
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 8.3.5.1
Умножим на .
Этап 8.3.5.2
Умножим на .
Этап 8.3.5.3
Умножим на .
Этап 8.3.5.4
Умножим на .
Этап 8.3.6
Объединим числители над общим знаменателем.
Этап 8.3.7
Добавим и .
Этап 9
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 10
Этап 10.1
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 10.2
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 10.3
Разделим на .
Этап 11
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 12