Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Перепишем в виде .
Этап 2.3
Найдем значение .
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 2.4
Изменим порядок членов.
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Этап 3.2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.2.2
Перепишем в виде .
Этап 3.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.4
Умножим на .
Этап 3.3
Продифференцируем, используя правило константы.
Этап 3.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 3.3.2
Добавим и .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Этап 5.1
Вычтем из обеих частей уравнения.
Этап 5.2
Добавим к обеим частям уравнения.
Этап 5.3
Вынесем множитель из .
Этап 5.3.1
Вынесем множитель из .
Этап 5.3.2
Вынесем множитель из .
Этап 5.3.3
Вынесем множитель из .
Этап 5.4
Разделим каждый член на и упростим.
Этап 5.4.1
Разделим каждый член на .
Этап 5.4.2
Упростим левую часть.
Этап 5.4.2.1
Сократим общий множитель .
Этап 5.4.2.1.1
Сократим общий множитель.
Этап 5.4.2.1.2
Разделим на .
Этап 5.4.3
Упростим правую часть.
Этап 5.4.3.1
Объединим числители над общим знаменателем.
Этап 6
Заменим на .