Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Перепишем в виде .
Этап 1.2
Развернем , вынося из логарифма.
Этап 2
Этап 2.1
Внесем предел под знак экспоненты.
Этап 2.2
Объединим и .
Этап 2.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3
Этап 3.1
Найдем предел числителя и предел знаменателя.
Этап 3.1.1
Возьмем предел числителя и предел знаменателя.
Этап 3.1.2
Найдем предел числителя.
Этап 3.1.2.1
Вычислим предел.
Этап 3.1.2.1.1
Внесем предел под знак логарифма.
Этап 3.1.2.1.2
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 3.1.2.1.3
Найдем предел , который является константой по мере приближения к .
Этап 3.1.2.1.4
Внесем предел под знак экспоненты.
Этап 3.1.2.1.5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.1.2.2
Найдем предел , подставив значение для .
Этап 3.1.2.3
Упростим ответ.
Этап 3.1.2.3.1
Упростим каждый член.
Этап 3.1.2.3.1.1
Умножим на .
Этап 3.1.2.3.1.2
Любое число в степени равно .
Этап 3.1.2.3.1.3
Умножим на .
Этап 3.1.2.3.2
Вычтем из .
Этап 3.1.2.3.3
Натуральный логарифм равен .
Этап 3.1.3
Найдем предел , подставив значение для .
Этап 3.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 3.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3.3
Найдем производную числителя и знаменателя.
Этап 3.3.1
Продифференцируем числитель и знаменатель.
Этап 3.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.2.2
Производная по равна .
Этап 3.3.2.3
Заменим все вхождения на .
Этап 3.3.3
По правилу суммы производная по имеет вид .
Этап 3.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.3.5
Добавим и .
Этап 3.3.6
Поскольку является константой относительно , производная по равна .
Этап 3.3.7
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.7.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.7.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.3.7.3
Заменим все вхождения на .
Этап 3.3.8
Объединим и .
Этап 3.3.9
Поскольку является константой относительно , производная по равна .
Этап 3.3.10
Умножим на .
Этап 3.3.11
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.12
Умножим на .
Этап 3.3.13
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Умножим числитель на величину, обратную знаменателю.
Этап 3.5
Умножим на .
Этап 4
Этап 4.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.3
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 4.4
Внесем предел под знак экспоненты.
Этап 4.5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.6
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 4.7
Найдем предел , который является константой по мере приближения к .
Этап 4.8
Внесем предел под знак экспоненты.
Этап 4.9
Вынесем член из-под знака предела, так как он не зависит от .
Этап 5
Этап 5.1
Найдем предел , подставив значение для .
Этап 5.2
Найдем предел , подставив значение для .
Этап 6
Этап 6.1
Умножим на .
Этап 6.2
Сократим общий множитель .
Этап 6.2.1
Вынесем множитель из .
Этап 6.2.2
Сократим общий множитель.
Этап 6.2.3
Перепишем это выражение.
Этап 6.3
Упростим числитель.
Этап 6.3.1
Умножим на .
Этап 6.3.2
Любое число в степени равно .
Этап 6.4
Упростим знаменатель.
Этап 6.4.1
Умножим на .
Этап 6.4.2
Любое число в степени равно .
Этап 6.4.3
Умножим на .
Этап 6.4.4
Вычтем из .
Этап 6.5
Сократим общий множитель .
Этап 6.5.1
Сократим общий множитель.
Этап 6.5.2
Перепишем это выражение.
Этап 6.6
Умножим на .
Этап 6.7
Перепишем выражение, используя правило отрицательных степеней .