Математический анализ Примеры

Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Умножим на .
Этап 1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Умножим на .
Этап 1.4
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.4.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.4.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.3.1
Умножим на .
Этап 1.4.3.2
Умножим на .
Этап 1.4.3.3
Умножим на .
Этап 1.4.3.4
Умножим на .
Этап 1.4.4
Объединим числители над общим знаменателем.
Этап 1.4.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.4.5.1
Умножим на .
Этап 1.4.5.2
Умножим на .
Этап 1.4.5.3
Добавим и .
Этап 2
Поскольку является константой относительно , производная относительно равна .