Введите задачу...
Математический анализ Примеры
Этап 1
Избавимся от скобок.
Этап 2
Разделим данный интеграл на несколько интегралов.
Этап 3
Этап 3.1
Пусть . Найдем .
Этап 3.1.1
Дифференцируем .
Этап 3.1.2
Поскольку является константой относительно , производная по равна .
Этап 3.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.4
Умножим на .
Этап 3.2
Переформулируем задачу с помощью и .
Этап 4
Объединим и .
Этап 5
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
Интеграл по имеет вид .
Этап 7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
Этап 8.1
Пусть . Найдем .
Этап 8.1.1
Дифференцируем .
Этап 8.1.2
Поскольку является константой относительно , производная по равна .
Этап 8.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8.1.4
Умножим на .
Этап 8.2
Переформулируем задачу с помощью и .
Этап 9
Этап 9.1
Вынесем знак минуса перед дробью.
Этап 9.2
Объединим и .
Этап 10
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 11
Умножим на .
Этап 12
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 13
Этап 13.1
Объединим и .
Этап 13.2
Сократим общий множитель и .
Этап 13.2.1
Вынесем множитель из .
Этап 13.2.2
Сократим общие множители.
Этап 13.2.2.1
Вынесем множитель из .
Этап 13.2.2.2
Сократим общий множитель.
Этап 13.2.2.3
Перепишем это выражение.
Этап 14
Интеграл по имеет вид .
Этап 15
Упростим.
Этап 16
Этап 16.1
Заменим все вхождения на .
Этап 16.2
Заменим все вхождения на .