Математический анализ Примеры

Trovare la Derivata - d/dx квадратный корень из x+x^(3/2)-8x
Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1
С помощью запишем в виде .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.4
Объединим и .
Этап 2.5
Объединим числители над общим знаменателем.
Этап 2.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Умножим на .
Этап 2.6.2
Вычтем из .
Этап 2.7
Вынесем знак минуса перед дробью.
Этап 3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.3
Объединим и .
Этап 3.4
Объединим числители над общим знаменателем.
Этап 3.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Умножим на .
Этап 3.5.2
Вычтем из .
Этап 4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.1
Поскольку является константой относительно , производная по равна .
Этап 4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3
Умножим на .
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 5.2
Умножим на .
Этап 5.3
Изменим порядок членов.
Этап 5.4
Объединим и .