Математический анализ Примеры

Найти особые точки f(x)=x^3-3/2x^2-36x
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Умножим на .
Этап 1.1.2.4
Объединим и .
Этап 1.1.2.5
Умножим на .
Этап 1.1.2.6
Объединим и .
Этап 1.1.2.7
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.1.2.7.1
Вынесем множитель из .
Этап 1.1.2.7.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.1.2.7.2.1
Вынесем множитель из .
Этап 1.1.2.7.2.2
Сократим общий множитель.
Этап 1.1.2.7.2.3
Перепишем это выражение.
Этап 1.1.2.7.2.4
Разделим на .
Этап 1.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Умножим на .
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Вынесем множитель из .
Этап 2.2.1.2
Вынесем множитель из .
Этап 2.2.1.3
Вынесем множитель из .
Этап 2.2.1.4
Вынесем множитель из .
Этап 2.2.1.5
Вынесем множитель из .
Этап 2.2.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.2.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.2.2.2
Избавимся от ненужных скобок.
Этап 2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Добавим к обеим частям уравнения.
Этап 2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Вычтем из обеих частей уравнения.
Этап 2.6
Окончательным решением являются все значения, при которых верно.
Этап 3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1.1
Возведем в степень .
Этап 4.1.2.1.2
Возведем в степень .
Этап 4.1.2.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.1.2.1.3.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 4.1.2.1.3.2
Вынесем множитель из .
Этап 4.1.2.1.3.3
Сократим общий множитель.
Этап 4.1.2.1.3.4
Перепишем это выражение.
Этап 4.1.2.1.4
Умножим на .
Этап 4.1.2.1.5
Умножим на .
Этап 4.1.2.2
Упростим путем вычитания чисел.
Нажмите для увеличения количества этапов...
Этап 4.1.2.2.1
Вычтем из .
Этап 4.1.2.2.2
Вычтем из .
Этап 4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.1
Возведем в степень .
Этап 4.2.2.1.2
Возведем в степень .
Этап 4.2.2.1.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.3.1
Умножим на .
Этап 4.2.2.1.3.2
Объединим и .
Этап 4.2.2.1.3.3
Умножим на .
Этап 4.2.2.1.4
Вынесем знак минуса перед дробью.
Этап 4.2.2.1.5
Умножим на .
Этап 4.2.2.2
Найдем общий знаменатель.
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1
Запишем в виде дроби со знаменателем .
Этап 4.2.2.2.2
Умножим на .
Этап 4.2.2.2.3
Умножим на .
Этап 4.2.2.2.4
Запишем в виде дроби со знаменателем .
Этап 4.2.2.2.5
Умножим на .
Этап 4.2.2.2.6
Умножим на .
Этап 4.2.2.3
Объединим числители над общим знаменателем.
Этап 4.2.2.4
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.2.4.1
Умножим на .
Этап 4.2.2.4.2
Умножим на .
Этап 4.2.2.5
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 4.2.2.5.1
Вычтем из .
Этап 4.2.2.5.2
Добавим и .
Этап 4.3
Перечислим все точки.
Этап 5