Математический анализ Примеры

Оценить предел предел ((2x+1)^40(4x-1)^5)/((2x+3)^45), если x стремится к infinity
Этап 1
Разделим числитель и знаменатель на в наибольшей степени в знаменателе.
Этап 2
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 2.1
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 2.2
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 2.3
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2.4
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.5
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.6
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.6.1
Сократим общий множитель.
Этап 2.6.2
Перепишем это выражение.
Этап 2.7
Найдем предел , который является константой по мере приближения к .
Этап 3
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 4
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 4.1
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 4.2
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 4.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.4.1
Сократим общий множитель.
Этап 4.4.2
Перепишем это выражение.
Этап 4.5
Найдем предел , который является константой по мере приближения к .
Этап 5
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 6
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 6.1
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 6.2
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 6.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.4.1
Сократим общий множитель.
Этап 6.4.2
Перепишем это выражение.
Этап 6.5
Найдем предел , который является константой по мере приближения к .
Этап 6.6
Вынесем член из-под знака предела, так как он не зависит от .
Этап 7
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 8
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 8.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 8.1.1
Умножим на .
Этап 8.1.2
Добавим и .
Этап 8.1.3
Умножим на .
Этап 8.1.4
Умножим на .
Этап 8.1.5
Добавим и .
Этап 8.1.6
Возведем в степень .
Этап 8.1.7
Возведем в степень .
Этап 8.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Умножим на .
Этап 8.2.2
Умножим на .
Этап 8.2.3
Добавим и .
Этап 8.2.4
Возведем в степень .
Этап 8.3
Умножим на .
Этап 8.4
Разделим на .