Математический анализ Примеры

Вычислим интеграл интеграл (5xe^(3x^2))/( квадратный корень из 2-3e^(3x^2)) по x
Этап 1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Дифференцируем .
Этап 2.1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
По правилу суммы производная по имеет вид .
Этап 2.1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.3.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.1.3.2.3
Заменим все вхождения на .
Этап 2.1.3.3
Поскольку является константой относительно , производная по равна .
Этап 2.1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.3.5
Умножим на .
Этап 2.1.3.6
Умножим на .
Этап 2.1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.1.4.1
Вычтем из .
Этап 2.1.4.2
Изменим порядок множителей в .
Этап 2.2
Переформулируем задачу с помощью и .
Этап 3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Вынесем знак минуса перед дробью.
Этап 3.2
Умножим на .
Этап 3.3
Перенесем влево от .
Этап 4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Умножим на .
Этап 6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 7.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.1.1
Объединим и .
Этап 7.1.2
Вынесем знак минуса перед дробью.
Этап 7.2
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 7.2.1
С помощью запишем в виде .
Этап 7.2.2
Вынесем из знаменателя, возведя в степень.
Этап 7.2.3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 7.2.3.1
Применим правило степени и перемножим показатели, .
Этап 7.2.3.2
Объединим и .
Этап 7.2.3.3
Вынесем знак минуса перед дробью.
Этап 8
По правилу степени интеграл по имеет вид .
Этап 9
Упростим.
Нажмите для увеличения количества этапов...
Этап 9.1
Перепишем в виде .
Этап 9.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 9.2.1
Умножим на .
Этап 9.2.2
Объединим и .
Этап 9.2.3
Умножим на .
Этап 9.2.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 9.2.4.1
Вынесем множитель из .
Этап 9.2.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 9.2.4.2.1
Вынесем множитель из .
Этап 9.2.4.2.2
Сократим общий множитель.
Этап 9.2.4.2.3
Перепишем это выражение.
Этап 9.2.5
Вынесем знак минуса перед дробью.
Этап 10
Заменим все вхождения на .