Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Пусть . Найдем .
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Поскольку является константой относительно , производная по равна .
Этап 1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Умножим на .
Этап 1.2
Переформулируем задачу с помощью и .
Этап 2
Этап 2.1
Умножим на обратную дробь, чтобы разделить на .
Этап 2.2
Умножим на .
Этап 2.3
Перенесем влево от .
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
По правилу степени интеграл по имеет вид .
Этап 5
Этап 5.1
Перепишем в виде .
Этап 5.2
Упростим.
Этап 5.2.1
Объединим и .
Этап 5.2.2
Умножим на .
Этап 5.2.3
Сократим общий множитель и .
Этап 5.2.3.1
Вынесем множитель из .
Этап 5.2.3.2
Сократим общие множители.
Этап 5.2.3.2.1
Вынесем множитель из .
Этап 5.2.3.2.2
Сократим общий множитель.
Этап 5.2.3.2.3
Перепишем это выражение.
Этап 5.2.3.2.4
Разделим на .
Этап 6
Заменим все вхождения на .