Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем предел числителя и предел знаменателя.
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Этап 1.1.2.1
Вычислим предел.
Этап 1.1.2.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.1.2
Внесем предел под знак экспоненты.
Этап 1.1.2.1.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 1.1.2.1.4
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.2
Найдем предел , подставив значение для .
Этап 1.1.2.3
Упростим ответ.
Этап 1.1.2.3.1
Упростим каждый член.
Этап 1.1.2.3.1.1
Умножим на .
Этап 1.1.2.3.1.2
Любое число в степени равно .
Этап 1.1.2.3.1.3
Умножим на .
Этап 1.1.2.3.2
Вычтем из .
Этап 1.1.3
Найдем предел знаменателя.
Этап 1.1.3.1
Вычислим предел.
Этап 1.1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.3.1.2
Внесем предел под знак экспоненты.
Этап 1.1.3.1.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.3.1.4
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.1.5
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.2
Найдем предел , подставив значение для .
Этап 1.1.3.3
Упростим ответ.
Этап 1.1.3.3.1
Упростим каждый член.
Этап 1.1.3.3.1.1
Добавим и .
Этап 1.1.3.3.1.2
Возведем в степень .
Этап 1.1.3.3.1.3
Умножим на .
Этап 1.1.3.3.2
Вычтем из .
Этап 1.1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
По правилу суммы производная по имеет вид .
Этап 1.3.3
Найдем значение .
Этап 1.3.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.3.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.3.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.3.3.1.3
Заменим все вхождения на .
Этап 1.3.3.2
Поскольку является константой относительно , производная по равна .
Этап 1.3.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3.4
Умножим на .
Этап 1.3.3.5
Перенесем влево от .
Этап 1.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.5
Добавим и .
Этап 1.3.6
По правилу суммы производная по имеет вид .
Этап 1.3.7
Найдем значение .
Этап 1.3.7.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.3.7.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.7.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.3.7.1.3
Заменим все вхождения на .
Этап 1.3.7.2
По правилу суммы производная по имеет вид .
Этап 1.3.7.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.7.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.7.5
Добавим и .
Этап 1.3.7.6
Умножим на .
Этап 1.3.8
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.9
Добавим и .
Этап 1.4
Сократим.
Этап 1.4.1
Сократим общий множитель и .
Этап 1.4.1.1
Вынесем множитель из .
Этап 1.4.1.2
Сократим общие множители.
Этап 1.4.1.2.1
Вынесем множитель из .
Этап 1.4.1.2.2
Сократим общий множитель.
Этап 1.4.1.2.3
Перепишем это выражение.
Этап 1.4.2
Сократим общий множитель .
Этап 1.4.2.1
Сократим общий множитель.
Этап 1.4.2.2
Разделим на .
Этап 2
Этап 2.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.2
Внесем предел под знак экспоненты.
Этап 3
Этап 3.1
Найдем предел , подставив значение для .
Этап 3.2
Упростим каждый член.
Этап 3.2.1
Умножим на .
Этап 3.2.2
Добавим и .
Этап 3.2.3
Умножим на .
Этап 3.3
Вычтем из .
Этап 4
Этап 4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2
Возведем в степень .
Этап 4.3
Объединим и .
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: