Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Проинтегрируем по частям, используя формулу , где и .
Этап 6
Этап 6.1
Объединим и .
Этап 6.2
Объединим и .
Этап 6.3
Объединим и .
Этап 7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
Этап 8.1
Пусть . Найдем .
Этап 8.1.1
Дифференцируем .
Этап 8.1.2
Поскольку является константой относительно , производная по равна .
Этап 8.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8.1.4
Умножим на .
Этап 8.2
Переформулируем задачу с помощью и .
Этап 9
Объединим и .
Этап 10
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 11
Этап 11.1
Умножим на .
Этап 11.2
Умножим на .
Этап 12
Интеграл по имеет вид .
Этап 13
Перепишем в виде .
Этап 14
Заменим все вхождения на .
Этап 15
Этап 15.1
Применим свойство дистрибутивности.
Этап 15.2
Сократим общий множитель .
Этап 15.2.1
Вынесем множитель из .
Этап 15.2.2
Сократим общий множитель.
Этап 15.2.3
Перепишем это выражение.
Этап 15.3
Сократим общий множитель .
Этап 15.3.1
Сократим общий множитель.
Этап 15.3.2
Перепишем это выражение.
Этап 16
Ответ ― первообразная функции .