Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Вынесем знак минуса перед дробью.
Этап 1.2
Поскольку является константой относительно , производная по равна .
Этап 1.3
Применим основные правила для показателей степени.
Этап 1.3.1
Перепишем в виде .
Этап 1.3.2
Перемножим экспоненты в .
Этап 1.3.2.1
Применим правило степени и перемножим показатели, .
Этап 1.3.2.2
Умножим .
Этап 1.3.2.2.1
Объединим и .
Этап 1.3.2.2.2
Умножим на .
Этап 1.3.2.3
Вынесем знак минуса перед дробью.
Этап 2
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Заменим все вхождения на .
Этап 3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4
Объединим и .
Этап 5
Объединим числители над общим знаменателем.
Этап 6
Этап 6.1
Умножим на .
Этап 6.2
Вычтем из .
Этап 7
Этап 7.1
Вынесем знак минуса перед дробью.
Этап 7.2
Объединим и .
Этап 7.3
Упростим выражение.
Этап 7.3.1
Перенесем влево от .
Этап 7.3.2
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 7.3.3
Умножим на .
Этап 7.3.4
Умножим на .
Этап 7.4
Умножим на .
Этап 7.5
Умножим.
Этап 7.5.1
Умножим на .
Этап 7.5.2
Умножим на .
Этап 8
По правилу суммы производная по имеет вид .
Этап 9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 10
Поскольку является константой относительно , производная относительно равна .
Этап 11
Этап 11.1
Добавим и .
Этап 11.2
Умножим на .