Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Разложим дробь и умножим на общий знаменатель.
Этап 1.1.1
Разложим дробь на множители.
Этап 1.1.1.1
Вынесем множитель из .
Этап 1.1.1.1.1
Вынесем множитель из .
Этап 1.1.1.1.2
Вынесем множитель из .
Этап 1.1.1.1.3
Возведем в степень .
Этап 1.1.1.1.4
Вынесем множитель из .
Этап 1.1.1.1.5
Вынесем множитель из .
Этап 1.1.1.1.6
Вынесем множитель из .
Этап 1.1.1.2
Разложим на множители, используя правило полных квадратов.
Этап 1.1.1.2.1
Перепишем в виде .
Этап 1.1.1.2.2
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 1.1.1.2.3
Перепишем многочлен.
Этап 1.1.1.2.4
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 1.1.2
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 1.1.3
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 1.1.4
Умножим каждую дробь в уравнении на знаменатель исходного выражения. В этом случае знаменатель равен .
Этап 1.1.5
Сократим общий множитель .
Этап 1.1.5.1
Сократим общий множитель.
Этап 1.1.5.2
Перепишем это выражение.
Этап 1.1.6
Сократим общий множитель .
Этап 1.1.6.1
Сократим общий множитель.
Этап 1.1.6.2
Перепишем это выражение.
Этап 1.1.7
Упростим каждый член.
Этап 1.1.7.1
Сократим общий множитель .
Этап 1.1.7.1.1
Сократим общий множитель.
Этап 1.1.7.1.2
Разделим на .
Этап 1.1.7.2
Перепишем в виде .
Этап 1.1.7.3
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 1.1.7.3.1
Применим свойство дистрибутивности.
Этап 1.1.7.3.2
Применим свойство дистрибутивности.
Этап 1.1.7.3.3
Применим свойство дистрибутивности.
Этап 1.1.7.4
Упростим и объединим подобные члены.
Этап 1.1.7.4.1
Упростим каждый член.
Этап 1.1.7.4.1.1
Умножим на .
Этап 1.1.7.4.1.2
Перенесем влево от .
Этап 1.1.7.4.1.3
Перепишем в виде .
Этап 1.1.7.4.1.4
Перепишем в виде .
Этап 1.1.7.4.1.5
Умножим на .
Этап 1.1.7.4.2
Вычтем из .
Этап 1.1.7.5
Применим свойство дистрибутивности.
Этап 1.1.7.6
Упростим.
Этап 1.1.7.6.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.1.7.6.2
Умножим на .
Этап 1.1.7.7
Сократим общий множитель .
Этап 1.1.7.7.1
Сократим общий множитель.
Этап 1.1.7.7.2
Разделим на .
Этап 1.1.7.8
Сократим общий множитель и .
Этап 1.1.7.8.1
Вынесем множитель из .
Этап 1.1.7.8.2
Сократим общие множители.
Этап 1.1.7.8.2.1
Умножим на .
Этап 1.1.7.8.2.2
Сократим общий множитель.
Этап 1.1.7.8.2.3
Перепишем это выражение.
Этап 1.1.7.8.2.4
Разделим на .
Этап 1.1.7.9
Применим свойство дистрибутивности.
Этап 1.1.7.10
Умножим на .
Этап 1.1.7.11
Перенесем влево от .
Этап 1.1.7.12
Перепишем в виде .
Этап 1.1.7.13
Применим свойство дистрибутивности.
Этап 1.1.7.14
Перепишем, используя свойство коммутативности умножения.
Этап 1.1.8
Упростим выражение.
Этап 1.1.8.1
Перенесем .
Этап 1.1.8.2
Изменим порядок и .
Этап 1.1.8.3
Перенесем .
Этап 1.1.8.4
Перенесем .
Этап 1.1.8.5
Перенесем .
Этап 1.2
Составим уравнения для переменных элементарной дроби и используем их для создания системы уравнений.
Этап 1.2.1
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 1.2.2
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 1.2.3
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты членов, не содержащих . Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 1.2.4
Составим систему уравнений, чтобы найти коэффициенты элементарных дробей.
Этап 1.3
Решим систему уравнений.
Этап 1.3.1
Перепишем уравнение в виде .
Этап 1.3.2
Заменим все вхождения на во всех уравнениях.
Этап 1.3.2.1
Заменим все вхождения в на .
Этап 1.3.2.2
Упростим правую часть.
Этап 1.3.2.2.1
Избавимся от скобок.
Этап 1.3.2.3
Заменим все вхождения в на .
Этап 1.3.2.4
Упростим правую часть.
Этап 1.3.2.4.1
Упростим каждый член.
Этап 1.3.2.4.1.1
Умножим на .
Этап 1.3.2.4.1.2
Перепишем в виде .
Этап 1.3.3
Решим относительно в .
Этап 1.3.3.1
Перепишем уравнение в виде .
Этап 1.3.3.2
Вычтем из обеих частей уравнения.
Этап 1.3.4
Заменим все вхождения на во всех уравнениях.
Этап 1.3.4.1
Заменим все вхождения в на .
Этап 1.3.4.2
Упростим правую часть.
Этап 1.3.4.2.1
Упростим .
Этап 1.3.4.2.1.1
Умножим на .
Этап 1.3.4.2.1.2
Добавим и .
Этап 1.3.5
Решим относительно в .
Этап 1.3.5.1
Перепишем уравнение в виде .
Этап 1.3.5.2
Добавим к обеим частям уравнения.
Этап 1.3.6
Решим систему уравнений.
Этап 1.3.7
Перечислим все решения.
Этап 1.4
Заменим каждый коэффициент элементарной дроби в значениями, найденными для , и .
Этап 1.5
Вынесем знак минуса перед дробью.
Этап 2
Разделим данный интеграл на несколько интегралов.
Этап 3
Интеграл по имеет вид .
Этап 4
Этап 4.1
Пусть . Найдем .
Этап 4.1.1
Дифференцируем .
Этап 4.1.2
По правилу суммы производная по имеет вид .
Этап 4.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.5
Добавим и .
Этап 4.2
Переформулируем задачу с помощью и .
Этап 5
Этап 5.1
Вынесем из знаменателя, возведя в степень.
Этап 5.2
Перемножим экспоненты в .
Этап 5.2.1
Применим правило степени и перемножим показатели, .
Этап 5.2.2
Умножим на .
Этап 6
По правилу степени интеграл по имеет вид .
Этап 7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
Этап 8.1
Пусть . Найдем .
Этап 8.1.1
Дифференцируем .
Этап 8.1.2
По правилу суммы производная по имеет вид .
Этап 8.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 8.1.5
Добавим и .
Этап 8.2
Переформулируем задачу с помощью и .
Этап 9
Интеграл по имеет вид .
Этап 10
Упростим.
Этап 11
Этап 11.1
Заменим все вхождения на .
Этап 11.2
Заменим все вхождения на .