Математический анализ Примеры

Trovare la Second Derivata f(x)=e^x+100e+8x^4+49
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.3
Поскольку является константой относительно , производная относительно равна .
Этап 1.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.4.3
Умножим на .
Этап 1.5
Поскольку является константой относительно , производная относительно равна .
Этап 1.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.6.1
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.6.1.1
Добавим и .
Этап 1.6.1.2
Добавим и .
Этап 1.6.2
Изменим порядок членов.
Этап 2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3
Вторая производная по равна .