Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Этап 4.1
Пусть . Найдем .
Этап 4.1.1
Дифференцируем .
Этап 4.1.2
По правилу суммы производная по имеет вид .
Этап 4.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.5
Добавим и .
Этап 4.2
Переформулируем задачу с помощью и .
Этап 5
Этап 5.1
Умножим на .
Этап 5.2
Перенесем влево от .
Этап 6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Этап 7.1
С помощью запишем в виде .
Этап 7.2
Вынесем из знаменателя, возведя в степень.
Этап 7.3
Перемножим экспоненты в .
Этап 7.3.1
Применим правило степени и перемножим показатели, .
Этап 7.3.2
Объединим и .
Этап 7.3.3
Вынесем знак минуса перед дробью.
Этап 8
По правилу степени интеграл по имеет вид .
Этап 9
Этап 9.1
Перепишем в виде .
Этап 9.2
Упростим.
Этап 9.2.1
Объединим и .
Этап 9.2.2
Сократим общий множитель .
Этап 9.2.2.1
Сократим общий множитель.
Этап 9.2.2.2
Перепишем это выражение.
Этап 9.2.3
Умножим на .
Этап 10
Заменим все вхождения на .
Этап 11
Ответ ― первообразная функции .