Введите задачу...
Математический анализ Примеры
Этап 1
Перепишем дифференциальное уравнение.
Этап 2
Этап 2.1
Вынесем множитель из .
Этап 2.1.1
Вынесем множитель из .
Этап 2.1.2
Вынесем множитель из .
Этап 2.1.3
Вынесем множитель из .
Этап 2.2
Умножим обе части на .
Этап 2.3
Упростим.
Этап 2.3.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.3.2
Объединим и .
Этап 2.3.3
Сократим общий множитель .
Этап 2.3.3.1
Вынесем множитель из .
Этап 2.3.3.2
Сократим общий множитель.
Этап 2.3.3.3
Перепишем это выражение.
Этап 2.4
Перепишем уравнение.
Этап 3
Этап 3.1
Зададим интеграл на каждой стороне.
Этап 3.2
Проинтегрируем левую часть.
Этап 3.2.1
Пусть . Тогда . Перепишем, используя и .
Этап 3.2.1.1
Пусть . Найдем .
Этап 3.2.1.1.1
Дифференцируем .
Этап 3.2.1.1.2
По правилу суммы производная по имеет вид .
Этап 3.2.1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.1.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.2.1.1.5
Добавим и .
Этап 3.2.1.2
Переформулируем задачу с помощью и .
Этап 3.2.2
Интеграл по имеет вид .
Этап 3.2.3
Заменим все вхождения на .
Этап 3.3
Проинтегрируем правую часть.
Этап 3.3.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 3.3.2
По правилу степени интеграл по имеет вид .
Этап 3.3.3
Упростим ответ.
Этап 3.3.3.1
Перепишем в виде .
Этап 3.3.3.2
Упростим.
Этап 3.3.3.2.1
Объединим и .
Этап 3.3.3.2.2
Сократим общий множитель .
Этап 3.3.3.2.2.1
Сократим общий множитель.
Этап 3.3.3.2.2.2
Перепишем это выражение.
Этап 3.3.3.2.3
Умножим на .
Этап 3.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 4
Этап 4.1
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 4.2
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 4.3
Решим относительно .
Этап 4.3.1
Перепишем уравнение в виде .
Этап 4.3.2
Избавимся от знаков модуля. В правой части уравнения возникнет знак , поскольку .
Этап 4.3.3
Добавим к обеим частям уравнения.
Этап 5
Этап 5.1
Перепишем в виде .
Этап 5.2
Изменим порядок и .
Этап 5.3
Объединим константы с плюсом или минусом.