Математический анализ Примеры

Найти первообразную cos(x)^5
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Вынесем за скобки.
Этап 5
Упростим с помощью разложения.
Нажмите для увеличения количества этапов...
Этап 5.1
Вынесем множитель из .
Этап 5.2
Перепишем в виде степенного выражения.
Этап 6
Используя формулы Пифагора, запишем в виде .
Этап 7
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 7.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 7.1.1
Дифференцируем .
Этап 7.1.2
Производная по равна .
Этап 7.2
Переформулируем задачу с помощью и .
Этап 8
Развернем .
Нажмите для увеличения количества этапов...
Этап 8.1
Перепишем в виде .
Этап 8.2
Применим свойство дистрибутивности.
Этап 8.3
Применим свойство дистрибутивности.
Этап 8.4
Применим свойство дистрибутивности.
Этап 8.5
Перенесем .
Этап 8.6
Перенесем .
Этап 8.7
Умножим на .
Этап 8.8
Умножим на .
Этап 8.9
Умножим на .
Этап 8.10
Умножим на .
Этап 8.11
Умножим на .
Этап 8.12
Применим правило степени для объединения показателей.
Этап 8.13
Добавим и .
Этап 8.14
Вычтем из .
Этап 8.15
Изменим порядок и .
Этап 8.16
Перенесем .
Этап 9
Разделим данный интеграл на несколько интегралов.
Этап 10
По правилу степени интеграл по имеет вид .
Этап 11
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 12
По правилу степени интеграл по имеет вид .
Этап 13
Применим правило дифференцирования постоянных функций.
Этап 14
Упростим.
Нажмите для увеличения количества этапов...
Этап 14.1
Объединим и .
Этап 14.2
Упростим.
Этап 15
Заменим все вхождения на .
Этап 16
Изменим порядок членов.
Этап 17
Ответ ― первообразная функции .