Введите задачу...
Математический анализ Примеры
Этап 1
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2
Разделим числитель и знаменатель на в наибольшей степени в знаменателе, т. е. .
Этап 3
Этап 3.1
Упростим каждый член.
Этап 3.1.1
Сократим общий множитель .
Этап 3.1.1.1
Сократим общий множитель.
Этап 3.1.1.2
Разделим на .
Этап 3.1.2
Сократим общий множитель и .
Этап 3.1.2.1
Вынесем множитель из .
Этап 3.1.2.2
Сократим общие множители.
Этап 3.1.2.2.1
Вынесем множитель из .
Этап 3.1.2.2.2
Сократим общий множитель.
Этап 3.1.2.2.3
Перепишем это выражение.
Этап 3.2
Упростим каждый член.
Этап 3.2.1
Сократим общий множитель .
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Перепишем это выражение.
Этап 3.2.2
Сократим общий множитель и .
Этап 3.2.2.1
Вынесем множитель из .
Этап 3.2.2.2
Сократим общие множители.
Этап 3.2.2.2.1
Вынесем множитель из .
Этап 3.2.2.2.2
Сократим общий множитель.
Этап 3.2.2.2.3
Перепишем это выражение.
Этап 3.2.3
Вынесем знак минуса перед дробью.
Этап 3.3
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 3.4
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 3.5
Найдем предел , который является константой по мере приближения к .
Этап 3.6
Вынесем член из-под знака предела, так как он не зависит от .
Этап 4
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 5
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 6
Этап 6.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 6.2
Найдем предел , который является константой по мере приближения к .
Этап 6.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 7
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 8
Вынесем член из-под знака предела, так как он не зависит от .
Этап 9
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 10
Этап 10.1
Упростим числитель.
Этап 10.1.1
Умножим на .
Этап 10.1.2
Добавим и .
Этап 10.1.3
Добавим и .
Этап 10.2
Упростим знаменатель.
Этап 10.2.1
Умножим на .
Этап 10.2.2
Умножим на .
Этап 10.2.3
Добавим и .
Этап 10.2.4
Добавим и .
Этап 10.3
Разделим на .
Этап 10.4
Возведем в степень .