Математический анализ Примеры

Найти первообразную cos(x/2)^2
Этап 1
Запишем в виде функции.
Этап 2
Чтобы найти функцию , найдем неопределенный интеграл производной .
Этап 3
Составим интеграл, чтобы решить его.
Этап 4
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 4.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Дифференцируем .
Этап 4.1.2
Поскольку является константой относительно , производная по равна .
Этап 4.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.4
Умножим на .
Этап 4.2
Переформулируем задачу с помощью и .
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Умножим на обратную дробь, чтобы разделить на .
Этап 5.2
Умножим на .
Этап 5.3
Перенесем влево от .
Этап 6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Используем формулу половинного угла для записи в виде .
Этап 8
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Упростим.
Нажмите для увеличения количества этапов...
Этап 9.1
Объединим и .
Этап 9.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 9.2.1
Сократим общий множитель.
Этап 9.2.2
Перепишем это выражение.
Этап 9.3
Умножим на .
Этап 10
Разделим данный интеграл на несколько интегралов.
Этап 11
Применим правило дифференцирования постоянных функций.
Этап 12
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 12.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 12.1.1
Дифференцируем .
Этап 12.1.2
Поскольку является константой относительно , производная по равна .
Этап 12.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 12.1.4
Умножим на .
Этап 12.2
Переформулируем задачу с помощью и .
Этап 13
Объединим и .
Этап 14
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 15
Интеграл по имеет вид .
Этап 16
Упростим.
Этап 17
Выполним обратную подстановку для каждой подставленной переменной интегрирования.
Нажмите для увеличения количества этапов...
Этап 17.1
Заменим все вхождения на .
Этап 17.2
Заменим все вхождения на .
Этап 17.3
Заменим все вхождения на .
Этап 18
Объединим и .
Этап 19
Упростим.
Нажмите для увеличения количества этапов...
Этап 19.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 19.1.1
Сократим общий множитель.
Этап 19.1.2
Разделим на .
Этап 19.2
Изменим порядок членов.
Этап 20
Ответ ― первообразная функции .