Математический анализ Примеры

Оценить предел предел ( квадратный корень из x^2)/x, когда x стремится к infinity
Этап 1
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Когда стремится к для радикалов, значение стремится к .
Этап 1.1.3
Для многочлена, старший коэффициент которого положителен, предел в бесконечности равен бесконечности.
Этап 1.1.4
Деление бесконечности на бесконечность не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 1.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.1
Сократим общий множитель.
Этап 1.4.2
Перепишем это выражение.
Этап 2
Найдем предел , который является константой по мере приближения к .