Математический анализ Примеры

Trovare la Derivata - d/dx y=x+3 натуральный логарифм от 5x-4x^2+e^(2x)-pi
Этап 1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2
Производная по равна .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
Поскольку является константой относительно , производная по равна .
Этап 2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.5
Умножим на .
Этап 2.6
Объединим и .
Этап 2.7
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.7.1
Сократим общий множитель.
Этап 2.7.2
Перепишем это выражение.
Этап 2.8
Объединим и .
Этап 3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Умножим на .
Этап 4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Чтобы применить цепное правило, зададим как .
Этап 4.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 4.1.3
Заменим все вхождения на .
Этап 4.2
Поскольку является константой относительно , производная по равна .
Этап 4.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.4
Умножим на .
Этап 4.5
Перенесем влево от .
Этап 5
Поскольку является константой относительно , производная относительно равна .
Этап 6
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Добавим и .
Этап 6.2
Изменим порядок членов.