Математический анализ Примеры

Решите Дифференциальное Уравнение 1/y*(dy)/(dt)=5*1/t
Этап 1
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Интеграл по имеет вид .
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Объединим и .
Этап 2.3.2
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.3
Интеграл по имеет вид .
Этап 2.3.4
Упростим.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Перенесем все члены с логарифмами в левую часть уравнения.
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Упростим путем переноса под логарифм.
Этап 3.2.1.2
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 3.3
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 3.4
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 3.5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.5.1
Перепишем уравнение в виде .
Этап 3.5.2
Умножим обе части на .
Этап 3.5.3
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.5.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.5.3.1.1
Сократим общий множитель.
Этап 3.5.3.1.2
Перепишем это выражение.
Этап 3.5.4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.5.4.1
Изменим порядок множителей в .
Этап 3.5.4.2
Избавимся от знаков модуля. В правой части уравнения возникнет знак , поскольку .
Этап 4
Сгруппируем постоянные члены.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим постоянную интегрирования.
Этап 4.2
Объединим константы с плюсом или минусом.