Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Умножим обе части на .
Этап 1.2
Упростим.
Этап 1.2.1
Объединим.
Этап 1.2.2
Сократим общий множитель .
Этап 1.2.2.1
Сократим общий множитель.
Этап 1.2.2.2
Перепишем это выражение.
Этап 1.2.3
Умножим на .
Этап 1.2.4
Умножим на .
Этап 1.2.5
Объединим и упростим знаменатель.
Этап 1.2.5.1
Умножим на .
Этап 1.2.5.2
Возведем в степень .
Этап 1.2.5.3
Возведем в степень .
Этап 1.2.5.4
Применим правило степени для объединения показателей.
Этап 1.2.5.5
Добавим и .
Этап 1.2.5.6
Перепишем в виде .
Этап 1.2.5.6.1
С помощью запишем в виде .
Этап 1.2.5.6.2
Применим правило степени и перемножим показатели, .
Этап 1.2.5.6.3
Объединим и .
Этап 1.2.5.6.4
Сократим общий множитель .
Этап 1.2.5.6.4.1
Сократим общий множитель.
Этап 1.2.5.6.4.2
Перепишем это выражение.
Этап 1.2.5.6.5
Упростим.
Этап 1.3
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Этап 2.2.1
Применим основные правила для показателей степени.
Этап 2.2.1.1
Вынесем из знаменателя, возведя в степень.
Этап 2.2.1.2
Перемножим экспоненты в .
Этап 2.2.1.2.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.2.2
Умножим на .
Этап 2.2.2
По правилу степени интеграл по имеет вид .
Этап 2.2.3
Перепишем в виде .
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.2
Упростим выражение.
Этап 2.3.2.1
С помощью запишем в виде .
Этап 2.3.2.2
Упростим.
Этап 2.3.2.2.1
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 2.3.2.2.2
Умножим на , сложив экспоненты.
Этап 2.3.2.2.2.1
Умножим на .
Этап 2.3.2.2.2.1.1
Возведем в степень .
Этап 2.3.2.2.2.1.2
Применим правило степени для объединения показателей.
Этап 2.3.2.2.2.2
Запишем в виде дроби с общим знаменателем.
Этап 2.3.2.2.2.3
Объединим числители над общим знаменателем.
Этап 2.3.2.2.2.4
Вычтем из .
Этап 2.3.2.3
Применим основные правила для показателей степени.
Этап 2.3.2.3.1
Вынесем из знаменателя, возведя в степень.
Этап 2.3.2.3.2
Перемножим экспоненты в .
Этап 2.3.2.3.2.1
Применим правило степени и перемножим показатели, .
Этап 2.3.2.3.2.2
Объединим и .
Этап 2.3.2.3.2.3
Вынесем знак минуса перед дробью.
Этап 2.3.3
По правилу степени интеграл по имеет вид .
Этап 2.3.4
Упростим ответ.
Этап 2.3.4.1
Перепишем в виде .
Этап 2.3.4.2
Умножим на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Этап 3.1
Найдем НОК знаменателей членов уравнения.
Этап 3.1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 3.1.2
НОК единицы и любого выражения есть это выражение.
Этап 3.2
Каждый член в умножим на , чтобы убрать дроби.
Этап 3.2.1
Умножим каждый член на .
Этап 3.2.2
Упростим левую часть.
Этап 3.2.2.1
Сократим общий множитель .
Этап 3.2.2.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.2.2.1.2
Сократим общий множитель.
Этап 3.2.2.1.3
Перепишем это выражение.
Этап 3.2.3
Упростим правую часть.
Этап 3.2.3.1
Изменим порядок множителей в .
Этап 3.3
Решим уравнение.
Этап 3.3.1
Перепишем уравнение в виде .
Этап 3.3.2
Вынесем множитель из .
Этап 3.3.2.1
Вынесем множитель из .
Этап 3.3.2.2
Вынесем множитель из .
Этап 3.3.2.3
Вынесем множитель из .
Этап 3.3.3
Разделим каждый член на и упростим.
Этап 3.3.3.1
Разделим каждый член на .
Этап 3.3.3.2
Упростим левую часть.
Этап 3.3.3.2.1
Разделим на .
Этап 3.3.3.3
Упростим правую часть.
Этап 3.3.3.3.1
Вынесем знак минуса перед дробью.