Математический анализ Примеры

Решите Дифференциальное Уравнение (dx)/(dt)=9/x , x(0)=9
,
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Умножим обе части на .
Этап 1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Сократим общий множитель.
Этап 1.2.2
Перепишем это выражение.
Этап 1.3
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
По правилу степени интеграл по имеет вид .
Этап 2.3
Применим правило дифференцирования постоянных функций.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим обе части уравнения на .
Этап 3.2
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Объединим и .
Этап 3.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.2.1
Сократим общий множитель.
Этап 3.2.1.1.2.2
Перепишем это выражение.
Этап 3.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Применим свойство дистрибутивности.
Этап 3.2.2.1.2
Умножим на .
Этап 3.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.4
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Вынесем множитель из .
Этап 3.4.2
Вынесем множитель из .
Этап 3.4.3
Вынесем множитель из .
Этап 3.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Так как принимает положительные значения при начальном условии , рассмотрим , чтобы найти . Подставим вместо , а вместо .
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Перепишем уравнение в виде .
Этап 5.2
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 5.3
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 5.3.1
С помощью запишем в виде .
Этап 5.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 5.3.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1.1.2.1
Сократим общий множитель.
Этап 5.3.2.1.1.2.2
Перепишем это выражение.
Этап 5.3.2.1.2
Умножим на .
Этап 5.3.2.1.3
Добавим и .
Этап 5.3.2.1.4
Упростим.
Этап 5.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
Возведем в степень .
Этап 5.4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Разделим каждый член на .
Этап 5.4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.4.2.1.1
Сократим общий множитель.
Этап 5.4.2.1.2
Разделим на .
Этап 6
Подставим вместо в и упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Подставим вместо .
Этап 6.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Вынесем множитель из .
Этап 6.2.2
Вынесем множитель из .
Этап 6.2.3
Вынесем множитель из .
Этап 6.3
Умножим на .
Этап 6.4
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.5
Объединим и .
Этап 6.6
Объединим числители над общим знаменателем.
Этап 6.7
Перенесем влево от .
Этап 6.8
Объединим и .
Этап 6.9
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 6.9.1
Сократим выражение путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 6.9.1.1
Вынесем множитель из .
Этап 6.9.1.2
Вынесем множитель из .
Этап 6.9.1.3
Сократим общий множитель.
Этап 6.9.1.4
Перепишем это выражение.
Этап 6.9.2
Разделим на .
Этап 6.10
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 6.10.1
Перепишем в виде .
Этап 6.10.2
Перепишем в виде .
Этап 6.11
Вынесем члены из-под знака корня.
Этап 6.12
Возведем в степень .