Введите задачу...
Математический анализ Примеры
,
Этап 1
Добавим к обеим частям уравнения.
Этап 2
Этап 2.1
Зададим интегрирование.
Этап 2.2
Проинтегрируем .
Этап 2.2.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.2
По правилу степени интеграл по имеет вид .
Этап 2.2.3
Упростим ответ.
Этап 2.2.3.1
Перепишем в виде .
Этап 2.2.3.2
Упростим.
Этап 2.2.3.2.1
Объединим и .
Этап 2.2.3.2.2
Сократим общий множитель .
Этап 2.2.3.2.2.1
Сократим общий множитель.
Этап 2.2.3.2.2.2
Перепишем это выражение.
Этап 2.2.3.2.3
Умножим на .
Этап 2.3
Уберем постоянную интегрирования.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Перепишем, используя свойство коммутативности умножения.
Этап 3.3
Перепишем, используя свойство коммутативности умножения.
Этап 3.4
Умножим на , сложив экспоненты.
Этап 3.4.1
Перенесем .
Этап 3.4.2
Применим правило степени для объединения показателей.
Этап 3.4.3
Добавим и .
Этап 3.5
Упростим .
Этап 3.6
Изменим порядок множителей в .
Этап 4
Перепишем левую часть как результат дифференцирования произведения.
Этап 5
Зададим интеграл на каждой стороне.
Этап 6
Проинтегрируем левую часть.
Этап 7
Применим правило дифференцирования постоянных функций.
Этап 8
Этап 8.1
Разделим каждый член на .
Этап 8.2
Упростим левую часть.
Этап 8.2.1
Сократим общий множитель .
Этап 8.2.1.1
Сократим общий множитель.
Этап 8.2.1.2
Разделим на .
Этап 9
Используем начальное условие, чтобы найти значение , подставив вместо и вместо в .
Этап 10
Этап 10.1
Перепишем уравнение в виде .
Этап 10.2
Упростим .
Этап 10.2.1
Объединим дроби.
Этап 10.2.1.1
Объединим числители над общим знаменателем.
Этап 10.2.1.2
Упростим выражение.
Этап 10.2.1.2.1
Умножим на .
Этап 10.2.1.2.2
Добавим и .
Этап 10.2.2
Упростим знаменатель.
Этап 10.2.2.1
Возведение в любую положительную степень дает .
Этап 10.2.2.2
Любое число в степени равно .
Этап 10.2.3
Разделим на .
Этап 11
Этап 11.1
Подставим вместо .