Введите задачу...
Математический анализ Примеры
Этап 1
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Применим правило дифференцирования постоянных функций.
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.2
Проинтегрируем по частям, используя формулу , где и .
Этап 2.3.3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.4
Упростим.
Этап 2.3.4.1
Умножим на .
Этап 2.3.4.2
Умножим на .
Этап 2.3.5
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 2.3.5.1
Пусть . Найдем .
Этап 2.3.5.1.1
Дифференцируем .
Этап 2.3.5.1.2
Поскольку является константой относительно , производная по равна .
Этап 2.3.5.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.5.1.4
Умножим на .
Этап 2.3.5.2
Переформулируем задачу с помощью и .
Этап 2.3.6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.7
Интеграл по имеет вид .
Этап 2.3.8
Перепишем в виде .
Этап 2.3.9
Заменим все вхождения на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .