Математический анализ Примеры

Решите Дифференциальное Уравнение (dx)/(dt)=x^2+1/81
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Умножим обе части на .
Этап 1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Сократим общий множитель.
Этап 1.2.2
Перепишем это выражение.
Этап 1.3
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Изменим порядок и .
Этап 2.2.2
Перепишем в виде .
Этап 2.2.3
Интеграл по имеет вид .
Этап 2.2.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.4.1
Умножим на обратную дробь, чтобы разделить на .
Этап 2.2.4.2
Умножим на .
Этап 2.2.4.3
Умножим на обратную дробь, чтобы разделить на .
Этап 2.2.4.4
Перенесем влево от .
Этап 2.3
Применим правило дифференцирования постоянных функций.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Разделим каждый член на .
Этап 3.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.1.2.1.1
Сократим общий множитель.
Этап 3.1.2.1.2
Разделим на .
Этап 3.2
Возьмем обратную арктангенса обеих частей уравнения, чтобы извлечь из арктангенса.
Этап 3.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Разделим каждый член на .
Этап 3.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Сократим общий множитель.
Этап 3.3.2.1.2
Разделим на .
Этап 4
Упростим постоянную интегрирования.