Математический анализ Примеры

Решите Дифференциальное Уравнение 6x^2dx-2(yd)y=0
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.2
По правилу степени интеграл по имеет вид .
Этап 2.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Перепишем в виде .
Этап 2.2.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.3.2.1
Объединим и .
Этап 2.2.3.2.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.2.3.2.2.1
Вынесем множитель из .
Этап 2.2.3.2.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.2.3.2.2.2.1
Вынесем множитель из .
Этап 2.2.3.2.2.2.2
Сократим общий множитель.
Этап 2.2.3.2.2.2.3
Перепишем это выражение.
Этап 2.2.3.2.2.2.4
Разделим на .
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.2
По правилу степени интеграл по имеет вид .
Этап 2.3.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Перепишем в виде .
Этап 2.3.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.3.2.1
Объединим и .
Этап 2.3.3.2.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.3.3.2.2.1
Вынесем множитель из .
Этап 2.3.3.2.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.3.3.2.2.2.1
Вынесем множитель из .
Этап 2.3.3.2.2.2.2
Сократим общий множитель.
Этап 2.3.3.2.2.2.3
Перепишем это выражение.
Этап 2.3.3.2.2.2.4
Разделим на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Разделим каждый член на .
Этап 3.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.1.2.2
Разделим на .
Этап 3.1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.1.3.1.1
Вынесем знак минуса из знаменателя .
Этап 3.1.3.1.2
Перепишем в виде .
Этап 3.1.3.1.3
Умножим на .
Этап 3.1.3.1.4
Вынесем знак минуса из знаменателя .
Этап 3.1.3.1.5
Перепишем в виде .
Этап 3.2
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Упростим постоянную интегрирования.