Введите задачу...
Математический анализ Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Умножим обе части на .
Этап 3
Этап 3.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2
Сократим общий множитель .
Этап 3.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.2.2
Сократим общий множитель.
Этап 3.2.3
Перепишем это выражение.
Этап 3.3
Вынесем знак минуса перед дробью.
Этап 3.4
Перепишем, используя свойство коммутативности умножения.
Этап 3.5
Сократим общий множитель .
Этап 3.5.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.5.2
Вынесем множитель из .
Этап 3.5.3
Сократим общий множитель.
Этап 3.5.4
Перепишем это выражение.
Этап 3.6
Вынесем знак минуса перед дробью.
Этап 4
Этап 4.1
Зададим интеграл на каждой стороне.
Этап 4.2
Проинтегрируем левую часть.
Этап 4.2.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.2.2
Пусть . Тогда . Перепишем, используя и .
Этап 4.2.2.1
Пусть . Найдем .
Этап 4.2.2.1.1
Дифференцируем .
Этап 4.2.2.1.2
По правилу суммы производная по имеет вид .
Этап 4.2.2.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.2.2.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 4.2.2.1.5
Добавим и .
Этап 4.2.2.2
Переформулируем задачу с помощью и .
Этап 4.2.3
Интеграл по имеет вид .
Этап 4.2.4
Упростим.
Этап 4.2.5
Заменим все вхождения на .
Этап 4.3
Проинтегрируем правую часть.
Этап 4.3.1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.3.2
Интеграл по имеет вид .
Этап 4.3.3
Упростим.
Этап 4.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 5
Этап 5.1
Перенесем все члены с логарифмами в левую часть уравнения.
Этап 5.2
Вычтем из обеих частей уравнения.
Этап 5.3
Разделим каждый член на и упростим.
Этап 5.3.1
Разделим каждый член на .
Этап 5.3.2
Упростим левую часть.
Этап 5.3.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 5.3.2.2
Разделим на .
Этап 5.3.3
Упростим правую часть.
Этап 5.3.3.1
Упростим каждый член.
Этап 5.3.3.1.1
Вынесем знак минуса из знаменателя .
Этап 5.3.3.1.2
Перепишем в виде .
Этап 5.3.3.1.3
Деление двух отрицательных значений дает положительное значение.
Этап 5.3.3.1.4
Разделим на .
Этап 5.4
Перенесем все члены с логарифмами в левую часть уравнения.
Этап 5.5
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 5.6
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 5.7
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 5.8
Решим относительно .
Этап 5.8.1
Перепишем уравнение в виде .
Этап 5.8.2
Умножим обе части на .
Этап 5.8.3
Упростим левую часть.
Этап 5.8.3.1
Сократим общий множитель .
Этап 5.8.3.1.1
Сократим общий множитель.
Этап 5.8.3.1.2
Перепишем это выражение.
Этап 5.8.4
Решим относительно .
Этап 5.8.4.1
Изменим порядок множителей в .
Этап 5.8.4.2
Избавимся от знаков модуля. В правой части уравнения возникнет знак , поскольку .
Этап 5.8.4.3
Изменим порядок множителей в .
Этап 5.8.4.4
Вычтем из обеих частей уравнения.
Этап 6
Этап 6.1
Упростим постоянную интегрирования.
Этап 6.2
Объединим константы с плюсом или минусом.