Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=4y^3cos(x)^2
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Умножим обе части на .
Этап 1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.2.2
Объединим и .
Этап 1.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Вынесем множитель из .
Этап 1.2.3.2
Сократим общий множитель.
Этап 1.2.3.3
Перепишем это выражение.
Этап 1.3
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Вынесем из знаменателя, возведя в степень.
Этап 2.2.1.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.2.2
Умножим на .
Этап 2.2.2
По правилу степени интеграл по имеет вид .
Этап 2.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Перепишем в виде .
Этап 2.2.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.3.2.1
Умножим на .
Этап 2.2.3.2.2
Перенесем влево от .
Этап 2.3
Проинтегрируем правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.2
Используем формулу половинного угла для записи в виде .
Этап 2.3.3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.4.1
Объединим и .
Этап 2.3.4.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.3.4.2.1
Вынесем множитель из .
Этап 2.3.4.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.3.4.2.2.1
Вынесем множитель из .
Этап 2.3.4.2.2.2
Сократим общий множитель.
Этап 2.3.4.2.2.3
Перепишем это выражение.
Этап 2.3.4.2.2.4
Разделим на .
Этап 2.3.5
Разделим данный интеграл на несколько интегралов.
Этап 2.3.6
Применим правило дифференцирования постоянных функций.
Этап 2.3.7
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.3.7.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.3.7.1.1
Дифференцируем .
Этап 2.3.7.1.2
Поскольку является константой относительно , производная по равна .
Этап 2.3.7.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.7.1.4
Умножим на .
Этап 2.3.7.2
Переформулируем задачу с помощью и .
Этап 2.3.8
Объединим и .
Этап 2.3.9
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.10
Интеграл по имеет вид .
Этап 2.3.11
Упростим.
Этап 2.3.12
Заменим все вхождения на .
Этап 2.3.13
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.13.1
Объединим и .
Этап 2.3.13.2
Применим свойство дистрибутивности.
Этап 2.3.13.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.13.3.1
Сократим общий множитель.
Этап 2.3.13.3.2
Перепишем это выражение.
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 3.1.2
НОК единицы и любого выражения есть это выражение.
Этап 3.2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Умножим каждый член на .
Этап 3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.2.2.1.2
Сократим общий множитель.
Этап 3.2.2.1.3
Перепишем это выражение.
Этап 3.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.3.1.2
Умножим на .
Этап 3.2.3.1.3
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.3.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.3.2
Изменим порядок множителей в .
Этап 3.3
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Перепишем уравнение в виде .
Этап 3.3.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Вынесем множитель из .
Этап 3.3.2.2
Вынесем множитель из .
Этап 3.3.2.3
Вынесем множитель из .
Этап 3.3.2.4
Вынесем множитель из .
Этап 3.3.2.5
Вынесем множитель из .
Этап 3.3.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.3.3.1
Разделим каждый член на .
Этап 3.3.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.3.2.1.1
Сократим общий множитель.
Этап 3.3.3.2.1.2
Перепишем это выражение.
Этап 3.3.3.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.3.2.2.1
Сократим общий множитель.
Этап 3.3.3.2.2.2
Разделим на .
Этап 3.3.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.3.3.1
Вынесем знак минуса перед дробью.
Этап 3.3.4
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.3.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 3.3.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.3.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.3.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.