Математический анализ Примеры

Решите Дифференциальное Уравнение x(yd)x+(2x^2+y^2)dy=0
Этап 1
Найдем , где .
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем по .
Этап 1.2
Поскольку является константой относительно , производная по равна .
Этап 1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.4
Умножим на .
Этап 2
Найдем , где .
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем по .
Этап 2.2
По правилу суммы производная по имеет вид .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 2.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.4.2
Добавим и .
Этап 3
Проверим, что .
Нажмите для увеличения количества этапов...
Этап 3.1
Подставим вместо , а вместо .
Этап 3.2
Так как левая часть не равна правой, уравнение не является тождеством.
не является тождеством.
не является тождеством.
Этап 4
Найдем коэффициент интегрирования .
Нажмите для увеличения количества этапов...
Этап 4.1
Подставим вместо .
Этап 4.2
Подставим вместо .
Этап 4.3
Подставим вместо .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Подставим вместо .
Этап 4.3.2
Вычтем из .
Этап 4.3.3
Подставим вместо .
Нажмите для увеличения количества этапов...
Этап 4.3.3.1
Сократим общий множитель.
Этап 4.3.3.2
Перепишем это выражение.
Этап 4.4
Найдем коэффициент интегрирования .
Этап 5
Найдем интеграл .
Нажмите для увеличения количества этапов...
Этап 5.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5.2
Интеграл по имеет вид .
Этап 5.3
Упростим.
Этап 5.4
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Упростим путем переноса под логарифм.
Этап 5.4.2
Экспонента и логарифм являются обратными функциями.
Этап 6
Умножим обе стороны на коэффициент интегрирования .
Нажмите для увеличения количества этапов...
Этап 6.1
Умножим на .
Этап 6.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Перенесем .
Этап 6.2.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Возведем в степень .
Этап 6.2.2.2
Применим правило степени для объединения показателей.
Этап 6.2.3
Добавим и .
Этап 6.3
Умножим на .
Этап 6.4
Применим свойство дистрибутивности.
Этап 6.5
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.5.1
Применим правило степени для объединения показателей.
Этап 6.5.2
Добавим и .
Этап 7
Приравняем к интегралу .
Этап 8
Проинтегрируем , чтобы найти .
Нажмите для увеличения количества этапов...
Этап 8.1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 8.2
По правилу степени интеграл по имеет вид .
Этап 8.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 8.3.1
Перепишем в виде .
Этап 8.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.3.2.1
Объединим и .
Этап 8.3.2.2
Объединим и .
Этап 8.3.3
Изменим порядок членов.
Этап 9
Так как интеграл будет содержать постоянную интегрирования, мы можем заменить на .
Этап 10
Зададим .
Этап 11
Найдем .
Нажмите для увеличения количества этапов...
Этап 11.1
Продифференцируем по .
Этап 11.2
По правилу суммы производная по имеет вид .
Этап 11.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 11.3.1
Объединим и .
Этап 11.3.2
Объединим и .
Этап 11.3.3
Поскольку является константой относительно , производная по равна .
Этап 11.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 11.3.5
Объединим и .
Этап 11.3.6
Объединим и .
Этап 11.3.7
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 11.3.7.1
Вынесем множитель из .
Этап 11.3.7.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 11.3.7.2.1
Вынесем множитель из .
Этап 11.3.7.2.2
Сократим общий множитель.
Этап 11.3.7.2.3
Перепишем это выражение.
Этап 11.3.7.2.4
Разделим на .
Этап 11.4
Продифференцируем, используя правило функции, которое гласит, что производная от равна .
Этап 11.5
Изменим порядок членов.
Этап 12
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 12.1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 12.1.1
Вычтем из обеих частей уравнения.
Этап 12.1.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 12.1.2.1
Изменим порядок множителей в членах и .
Этап 12.1.2.2
Вычтем из .
Этап 12.1.2.3
Добавим и .
Этап 13
Найдем первообразную , чтобы найти .
Нажмите для увеличения количества этапов...
Этап 13.1
Проинтегрируем обе части .
Этап 13.2
Найдем значение .
Этап 13.3
По правилу степени интеграл по имеет вид .
Этап 14
Подставим выражение для в .
Этап 15
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 15.1
Объединим и .
Этап 15.2
Объединим и .
Этап 15.3
Объединим и .