Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Решим относительно .
Этап 1.1.1
Изменим порядок множителей в .
Этап 1.1.2
Вычтем из обеих частей уравнения.
Этап 1.1.3
Разделим каждый член на и упростим.
Этап 1.1.3.1
Разделим каждый член на .
Этап 1.1.3.2
Упростим левую часть.
Этап 1.1.3.2.1
Сократим общий множитель .
Этап 1.1.3.2.1.1
Сократим общий множитель.
Этап 1.1.3.2.1.2
Разделим на .
Этап 1.1.3.3
Упростим правую часть.
Этап 1.1.3.3.1
Сократим общий множитель и .
Этап 1.1.3.3.1.1
Вынесем множитель из .
Этап 1.1.3.3.1.2
Сократим общие множители.
Этап 1.1.3.3.1.2.1
Умножим на .
Этап 1.1.3.3.1.2.2
Сократим общий множитель.
Этап 1.1.3.3.1.2.3
Перепишем это выражение.
Этап 1.1.3.3.1.2.4
Разделим на .
Этап 1.2
Перепишем уравнение.
Этап 2
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Применим правило дифференцирования постоянных функций.
Этап 2.3
Проинтегрируем правую часть.
Этап 2.3.1
Разделим данный интеграл на несколько интегралов.
Этап 2.3.2
Упростим выражение.
Этап 2.3.2.1
Поменяем знак экспоненты и вынесем ее из знаменателя.
Этап 2.3.2.2
Упростим.
Этап 2.3.2.2.1
Перемножим экспоненты в .
Этап 2.3.2.2.1.1
Применим правило степени и перемножим показатели, .
Этап 2.3.2.2.1.2
Умножим на .
Этап 2.3.2.2.2
Умножим на .
Этап 2.3.3
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 2.3.3.1
Пусть . Найдем .
Этап 2.3.3.1.1
Дифференцируем .
Этап 2.3.3.1.2
Поскольку является константой относительно , производная по равна .
Этап 2.3.3.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3.1.4
Умножим на .
Этап 2.3.3.2
Переформулируем задачу с помощью и .
Этап 2.3.4
Упростим.
Этап 2.3.4.1
Вынесем знак минуса перед дробью.
Этап 2.3.4.2
Объединим и .
Этап 2.3.5
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.7
Интеграл по имеет вид .
Этап 2.3.8
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.9
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 2.3.9.1
Пусть . Найдем .
Этап 2.3.9.1.1
Дифференцируем .
Этап 2.3.9.1.2
Поскольку является константой относительно , производная по равна .
Этап 2.3.9.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.9.1.4
Умножим на .
Этап 2.3.9.2
Переформулируем задачу с помощью и .
Этап 2.3.10
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.3.11
Упростим.
Этап 2.3.11.1
Умножим на .
Этап 2.3.11.2
Умножим на .
Этап 2.3.12
Интеграл по имеет вид .
Этап 2.3.13
Упростим.
Этап 2.3.14
Выполним обратную подстановку для каждой подставленной переменной интегрирования.
Этап 2.3.14.1
Заменим все вхождения на .
Этап 2.3.14.2
Заменим все вхождения на .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .