Математический анализ Примеры

Решите Дифференциальное Уравнение xdy-(yd)x=0
Этап 1
Подставим вместо .
Этап 2
Добавим к обеим частям уравнения.
Этап 3
Умножим обе части на .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Вынесем множитель из .
Этап 4.1.2
Сократим общий множитель.
Этап 4.1.3
Перепишем это выражение.
Этап 4.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Вынесем множитель из .
Этап 4.2.2
Сократим общий множитель.
Этап 4.2.3
Перепишем это выражение.
Этап 5
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 5.1
Зададим интеграл на каждой стороне.
Этап 5.2
Интеграл по имеет вид .
Этап 5.3
Интеграл по имеет вид .
Этап 5.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Перенесем все члены с логарифмами в левую часть уравнения.
Этап 6.2
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 6.3
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 6.4
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 6.5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.5.1
Перепишем уравнение в виде .
Этап 6.5.2
Умножим обе части на .
Этап 6.5.3
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.5.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.5.3.1.1
Сократим общий множитель.
Этап 6.5.3.1.2
Перепишем это выражение.
Этап 6.5.4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.5.4.1
Изменим порядок множителей в .
Этап 6.5.4.2
Избавимся от знаков модуля. В правой части уравнения возникнет знак , поскольку .
Этап 7
Сгруппируем постоянные члены.
Нажмите для увеличения количества этапов...
Этап 7.1
Упростим постоянную интегрирования.
Этап 7.2
Объединим константы с плюсом или минусом.