Математический анализ Примеры

Решите Дифференциальное Уравнение y(dy)/(dx)-(1+y)x^2=0
Этап 1
Разделим переменные.
Нажмите для увеличения количества этапов...
Этап 1.1
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Применим свойство дистрибутивности.
Этап 1.1.1.2
Умножим на .
Этап 1.1.1.3
Применим свойство дистрибутивности.
Этап 1.1.1.4
Перепишем в виде .
Этап 1.1.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Добавим к обеим частям уравнения.
Этап 1.1.2.2
Добавим к обеим частям уравнения.
Этап 1.1.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Разделим каждый член на .
Этап 1.1.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.3.2.1.1
Сократим общий множитель.
Этап 1.1.3.2.1.2
Разделим на .
Этап 1.1.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.3.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.1.3.3.1.1
Сократим общий множитель.
Этап 1.1.3.3.1.2
Разделим на .
Этап 1.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Вынесем множитель из .
Этап 1.2.1.2
Умножим на .
Этап 1.2.1.3
Вынесем множитель из .
Этап 1.2.2
Запишем в виде дроби с общим знаменателем.
Этап 1.2.3
Объединим числители над общим знаменателем.
Этап 1.3
Умножим обе части на .
Этап 1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Объединим и .
Этап 1.4.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.2.1
Сократим общий множитель.
Этап 1.4.2.2
Перепишем это выражение.
Этап 1.4.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.3.1
Вынесем множитель из .
Этап 1.4.3.2
Сократим общий множитель.
Этап 1.4.3.3
Перепишем это выражение.
Этап 1.5
Перепишем уравнение.
Этап 2
Проинтегрируем обе части.
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интеграл на каждой стороне.
Этап 2.2
Проинтегрируем левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Изменим порядок и .
Этап 2.2.2
Разделим на .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
++
Этап 2.2.2.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
++
Этап 2.2.2.3
Умножим новое частное на делитель.
++
++
Этап 2.2.2.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
++
--
Этап 2.2.2.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
++
--
-
Этап 2.2.2.6
Окончательный ответ: неполное частное плюс остаток, деленный на делитель.
Этап 2.2.3
Разделим данный интеграл на несколько интегралов.
Этап 2.2.4
Применим правило дифференцирования постоянных функций.
Этап 2.2.5
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2.2.6
Пусть . Тогда . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.2.6.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.2.6.1.1
Дифференцируем .
Этап 2.2.6.1.2
По правилу суммы производная по имеет вид .
Этап 2.2.6.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.6.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.2.6.1.5
Добавим и .
Этап 2.2.6.2
Переформулируем задачу с помощью и .
Этап 2.2.7
Интеграл по имеет вид .
Этап 2.2.8
Упростим.
Этап 2.2.9
Заменим все вхождения на .
Этап 2.3
По правилу степени интеграл по имеет вид .
Этап 2.4
Сгруппируем постоянную интегрирования в правой части как .