Введите задачу...
Математический анализ Примеры
Этап 1
Перепишем уравнение.
Этап 2
Умножим обе части на .
Этап 3
Этап 3.1
Объединим и .
Этап 3.2
Сократим общий множитель .
Этап 3.2.1
Вынесем множитель из .
Этап 3.2.2
Сократим общий множитель.
Этап 3.2.3
Перепишем это выражение.
Этап 4
Этап 4.1
Зададим интеграл на каждой стороне.
Этап 4.2
Проинтегрируем левую часть.
Этап 4.2.1
Пусть . Тогда , следовательно . Перепишем, используя и .
Этап 4.2.1.1
Пусть . Найдем .
Этап 4.2.1.1.1
Дифференцируем .
Этап 4.2.1.1.2
По правилу суммы производная по имеет вид .
Этап 4.2.1.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 4.2.1.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.2.1.1.5
Добавим и .
Этап 4.2.1.2
Переформулируем задачу с помощью и .
Этап 4.2.2
Упростим.
Этап 4.2.2.1
Умножим на .
Этап 4.2.2.2
Перенесем влево от .
Этап 4.2.3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4.2.4
Интеграл по имеет вид .
Этап 4.2.5
Упростим.
Этап 4.2.6
Заменим все вхождения на .
Этап 4.3
По правилу степени интеграл по имеет вид .
Этап 4.4
Сгруппируем постоянную интегрирования в правой части как .
Этап 5
Этап 5.1
Умножим обе части уравнения на .
Этап 5.2
Упростим обе части уравнения.
Этап 5.2.1
Упростим левую часть.
Этап 5.2.1.1
Упростим .
Этап 5.2.1.1.1
Объединим и .
Этап 5.2.1.1.2
Сократим общий множитель .
Этап 5.2.1.1.2.1
Сократим общий множитель.
Этап 5.2.1.1.2.2
Перепишем это выражение.
Этап 5.2.2
Упростим правую часть.
Этап 5.2.2.1
Упростим .
Этап 5.2.2.1.1
Объединим и .
Этап 5.2.2.1.2
Применим свойство дистрибутивности.
Этап 5.2.2.1.3
Сократим общий множитель .
Этап 5.2.2.1.3.1
Сократим общий множитель.
Этап 5.2.2.1.3.2
Перепишем это выражение.
Этап 5.3
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 5.4
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 5.5
Решим относительно .
Этап 5.5.1
Перепишем уравнение в виде .
Этап 5.5.2
Избавимся от знаков модуля. В правой части уравнения возникнет знак , поскольку .
Этап 5.5.3
Вычтем из обеих частей уравнения.
Этап 5.5.4
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 6
Этап 6.1
Упростим постоянную интегрирования.
Этап 6.2
Перепишем в виде .
Этап 6.3
Изменим порядок и .
Этап 6.4
Объединим константы с плюсом или минусом.