Математический анализ Примеры

Решите Дифференциальное Уравнение (dy)/(dx)=e^(3x)+2y
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Интегрирующий множитель определяется по формуле , где .
Нажмите для увеличения количества этапов...
Этап 2.1
Зададим интегрирование.
Этап 2.2
Применим правило дифференцирования постоянных функций.
Этап 2.3
Уберем постоянную интегрирования.
Этап 3
Умножим каждый член на интегрирующий множитель .
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Перепишем, используя свойство коммутативности умножения.
Этап 3.3
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Применим правило степени для объединения показателей.
Этап 3.3.2
Добавим и .
Этап 3.4
Изменим порядок множителей в .
Этап 4
Перепишем левую часть как результат дифференцирования произведения.
Этап 5
Зададим интеграл на каждой стороне.
Этап 6
Проинтегрируем левую часть.
Этап 7
Интеграл по имеет вид .
Этап 8
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Разделим каждый член на .
Этап 8.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.2.1.1
Сократим общий множитель.
Этап 8.2.1.2
Разделим на .
Этап 8.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 8.3.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 8.3.1.1
Вынесем множитель из .
Этап 8.3.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 8.3.1.2.1
Умножим на .
Этап 8.3.1.2.2
Сократим общий множитель.
Этап 8.3.1.2.3
Перепишем это выражение.
Этап 8.3.1.2.4
Разделим на .